
INTRODUCTION

Shape memory alloys (SMAs) are smart ma-
terials that possess special characteristics of su-
perelasticity, shape memory effect, and biocom-
patibility etc. which make them prime candidate 
materials for biomedical, precision and scientific 
applications. The NiTi type shape memory alloy 
is preferably used for biomedical applications 
and hence processed by various manufacturing 
techniques (machining is one of them) for the 
production of biomedical parts, instruments, and 
equipment [1]. Ni55.8Ti is a Ni-rich nickel tita-
nium alloy and used in orthodontics, medical in-
strument, dental and orthopedic implants [2÷3]. 
However, it is a difficult-to-machine (DTM) ma-
terial and its machinability is poor specially in 
the case of conventional machining. Excessive 
burr formation, higher strain hardening, high 
chemical reactivity, and severe tool wear etc. 
are some of the common problems. It compels 
to explore advanced machining techniques for 
machinability enhancement of this alloy [4]. 

Wire electric discharge machining (Wire-
EDM or WEDM) is a thermal type advanced 
machining process that works on the principle of 
thermoelectric erosion, where the machining is 
done in the form of material removal due to the 
occurrence of a spark between a travelling wire 
electrode (cathode) and workpiece electrode (an-
ode) [5]. This process has a previous track record 
to precisely machine DTM materials [6]. Taking 
this into consideration, WEDM has been used to 
machine Ni55.8Ti in the present work. 

Modelling and computation of optimum 
process parameters is an essential requirement 
in machining operations in order to obtain high 
quality parts with high productivity. Optimum 
parameters, as regards to the specific application 
requirements for a particular material are impor-
tant to be known. MRR, SR, cutting rate, micro-
hardness, recast layer thickness, and dimensional 
error etc. are some of the major responses or ma-
chinability indicators which measure the success 
of any machining process. 
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There are many statistical techniques avail-
able for optimization, but they suffer from certain 
inherent limitations, and commonly they all can-
not effectively solve multi criteria decision making 
(MCDM) problems for contradictory responses [7]. 
Soft computing or evolutionary techniques such 
as NN, Fuzzy, TOPSIS, GA, and ANFIS etc. have 
been used recently to solve these problems.

Particle Swarm Optimization (PSO) is na-
ture-inspired meta-heuristics technique for the 
solution of optimization problems. It has number 
of individuals known as particles, which learned 
from the movement of itself and the other par-
ticles of the swarms. The individual best is known 
as particle best (Pbest) and overall best is known 
as global best solution (Gbest). Every particle of 
the swarm remembers its own best and its current 
position and by the help of this data the best solu-
tion i.e. Gbest is found out [8]. The technique of 
order of preference by similarity of ideal solution 
(TOPSIS) is a technique to solve multi-objective 
problems. The integration of TOPSIS-Fuzzy pro-
vides a common performance index. TOPSIS 
is used for the normalization of data; however 
Fuzzy is further implemented to investigate the 
performance index by if-then statements. The 
review of literature on the effective use of these 
techniques in machining area is given below. 

There has been a track record of successfully 
employing hybrid multi-criteria decision-making 
techniques for the WEDM type machining pro-
cess [9÷16]. Response surface methodology and 
grey-Fuzzy algorithm based multi-response opti-
mization of the WEDM parameters was done by 
Choudhuri et al. [9] for machining of stainless 
steel 316. They found significant improvement 
in results and achieved best values of responses 
such as 3.10 µm average roughness, 4.701 mm3/
min material removal rate, and 16.749 kg wire 
consumption. Caydas et al. [10] developed adap-
tive neuro-fuzzy inference system (ANFIS) mod-
el for modeling and optimization of the WEDM 
process parameters. They successfully minimized 
surface roughness and white layer thickness pro-
duced after WEDM of AIDI D5 tool steel. Singh 
et al. [11] reported multiobjective optimization 
of wire-electro discharge machining of Al5083/
B4C composite by Taguchi and Fuzzy based 
hybrid approach. The 2.8 to 4.5 % errors have 
been investigated during validation experiment 
conducted after WEDM machining of compos-
ite at optimum parameters. Majumder and Ma-
ity [12] used MOORA-Fuzzy hybrid technique 

for WEDM parameter optimization and obtained 
significant improvement in surface quality and 
microhardness while machining nitinol shape 
memory alloy using WEDM. They reported 10-
66% improvement in surface finish after machin-
ing at optimum WEDM parameters. Mukherjee 
et al. [13] highlighted the superiority of biogeog-
raphy-based optimization technique for optimi-
zation of the WEDM parameters to achieve in-
crement in process productivity and part surface 
quality. The nondominated sorting genetic algo-
rithm integrated with Taguchi was employed by 
Magabe et al. [14] to improve the machinability 
of the WEDM process for Ni55.8Ti shape memory 
alloy. Mean roughness depth of 6.2 µm and 0.021 
g/min material removal rate have been achieved 
after machining at optimum parameters produced 
by hybrid optimization technique. In an another 
important study, El-Bahloul [15] successfully 
improved process performance and stainless steel 
304 part quality using response surface technique 
integrated Fuzzy approach. The research work 
reported by Tzeng et al. [16] highlights the ef-
fectiveness of back-propagation neural network 
(BPNN), a genetic algorithm (GA), and response 
surface methodology (RSM) based hybrid tech-
nique for the WEDM parameter optimization to 
obtain better material removal rate (0.2704 g/
min) and average surface roughness (1.3561 µm) 
when machining tungsten carbide. 

The review of important available literature re-
veals that hybrid optimization techniques have been 
found effective to optimize the WEDM parameters 
to obtain the improved machinability while ma-
chining various materials. However, specifically, 
for WEDM of shape memory alloys type DTM 
material, there is a lack of work on use of hybrid 
soft computing techniques for modeling and opti-
mization. The present work fulfils this gap and aims 
to focus on TOPSIS-Fuzzy-PSO integrated model-
ing and optimization of wire-EDM of Ni55.8Ti alloy 
while simultaneously considering material removal 
rate (MRR), surface roughness (SR), and recast 
layer as responses. The experimental, modeling and 
optimization methodology and the results obtained 
are presented in the subsequent sections.

EXPERIMENTAL PROCEDURE

This section details the work-material, ex-
perimental set-up, measurement of responses, 
and experimental planning. The Ni55.8Ti raw 
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material for wire-EDM was in the form of a cy-
lindrical bar with the diameter of 16 mm and 
length of 550 mm. It was cut in circular pieces 
of 2 mm thickness while wire-EDM machining. 
A total of sixteen experiments have been per-
formed as per Taguchi’s robust design of ex-
periment technique with L16 orthogonal array. 
Figure 1 shows the experimental setup used for 
wire-EDM of Ni55.8Ti alloys. Four wire-EDM 
parameters, namely servo voltage ‘SV’, pulse-
on time ‘Pon’, pulse-off time ‘Poff’, wire feed 
rate ‘WF’ have been varied at four levels each. 

Material removal rate (MRR), maximum 
roughness (Rt), and recast layer thickness 
(RCL) are the responses measured to evaluate 
the process productivity and surface quality. 
Table 1 gives the details of wire-EDM parame-
ters. For the measurement of MRR, the weight 
difference of material bar (in grams) before 
and after machining is divided by the ma-
chining time (in minutes). Maximum surface 
roughness Rt is the distance between the high-
est peak and deepest valley and was measured 
using a TmTech make surface roughness tester 

Table 1. Details of wire-EDM parameters
Variable process parameters

Sr. 
No. Machining Parameter Unit Level 1 Level 2 Level 3 Level 4

1 Spark Gap Voltage ‘SV’ Volts 20 30 40 50

2 Pulse-on Time ‘Pon’ μs 0.35 0.55 0.8 1

3 Pulse off-Time ‘Poff’ μs 9 11.5 15 24

4 Wire Feed rate ‘WF’ m/min 3 6 9 12

Constant process parameters

1 Dielectric pressure 7 kg/cm2

2 Wire tension 11.8 N

3 Dielectric temperature 20-24°C

7 Working temperature 25°C

5 Dielectric Deionized water

6 Electrode Zinc coated brass wire (0.25 mm diameter)

7 Work-Piece Ni55.8Ti SMA

Fig. 1. Experimental setup
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perpendicular to the travel of wire electrode 
i.e. across the machining direction. Average of 
the four values was considered as final value. 
Thickness of the recast layer RCL which is un-
avoidable as well as undesirable was measured 
using an optical microscope.

Figure 2 presents the sequence of tasks con-
ducted during intelligent machining of Ni55.8Ti 
by wire-EDM process in the present work. As 

it was shown, experimental planning and design 
using Taguchi L16 was followed by the evalu-
ation of performance index using TOPSIS, and 
thereafter Fuzzy was applied for fuzzification 
and defuzzification. The regression analysis of 
TOPSIS Fuzzy performance index was con-
ducted and then PSO was used to predict the 
optimum setting which was further verified by 
conducting confirmation experiments. 

Table 2. Experimental matrix with results
Sl. No. SV Pon Poff WF MRR Rt RCL

1 20 0.35 9 3 0.007 8.159 8.23

2 20 0.5 11.5 6 0.024 8.876 11.03

3 20 0.85 15 9 0.026 9.093 13.22

4 20 1 24 12 0.027 9.885 16.28

5 30 0.35 11.5 9 0.009 8.823 7.23

6 30 0.5 9 12 0.028 9.649 13.01

7 30 0.85 24 3 0.017 8.497 13.48

8 30 1 15 6 0.032 10.246 17.29

9 40 0.35 15 12 0.011 8.759 9.12

10 40 0.5 24 9 0.021 9.127 10.84

11 40 0.85 9 6 0.032 9.559 16.46

12 40 1 11.5 3 0.029 10.413 18.75

13 50 0.35 24 6 0.009 8.515 9.12

14 50 0.5 15 3 0.025 8.805 13.32

15 50 0.85 11.5 12 0.036 10.473 17.16

16 50 1 9 9 0.044 11.332 21.67

Fig. 2. Sequence of tasks i.e. experimentation-measurement-modeling-
computation performed in the present work



47

Advances in Science and Technology Research Journal 2021, 15(3), 43–53

TOPSIS-Fuzzy is a multi-criteria decision 
making (MCDM) technique where all responses 
are converted into one performance index (Pi) and 
computation of input parameters is done for that 
performance index. A hybrid technique of TOP-
SIS-Fuzzy logic was used to compute WEDM 
parameters for optimization. Data normalization 
was done using TOPSIS.

RESULTS AND DISCUSSION

Table 2 presents the experimental matrix i.e. ex-
perimental combinations of process parameters and 
corresponding values of responses. This has been 
used as a source data for TOPSIS normalization.

Parametric Analysis

The effects of wire-EDM parameters on the 
response characteristics (MRR, Rt and RCL) are 
presented with the help of Figs. 3-5. The variation 
of MRR with wire-EDM parameters are shown 

in Fig. 3. It was found that the fourth level of SV, 
fourth level of Pon, first level of Poff and fourth lev-
el of WF suggest the maximum MRR. Maximum 
roughness Rt is a lower the better type quality 
characteristic i.e. contrary to the MRR. 

Owing to this, the first level of SV, first level of 
Pon, fo fourth rth level of Poff and first level of WF 
correspond to the minimum Rt (that implies high-
est surface finish) value as shown in Fig. 4. Fig. 
5 illustrates the effect of wire-EDM parameters 
on RCL. A better surface morphology for the bio-
medical applications of Ni55.8Ti alloy requires RCL 
thickness as low as possible. Hence, low value of 
SV and Pon along with the high value of Poff and in-
termediate value of WF correspond to a machining 
condition providing least recast layer thickness. 

TOPSIS-Fuzzy-PSO Optimization

After experimentation, the TOPSIS-Fuzzy 
based hybrid MCDM technique was used to ob-
tain the optimum values of wire-EDM parameters 
for MRR (higher the better type) and Rt and RCL 

Fig. 3. Variation of MRR with respect to input parameters
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Fig. 4. Variation of Rt with respect to input parameters

Fig. 5. Variation of RCL with respect to input parameters
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(smaller the better) type. After normalization, 
fuzzification was done, and then a Fuzzy model 
was developed by Fuzzy interface system (FIS), 
Mamdani type by a membership function (MF) 
for input and output parameters. 

Fig. 6a-c depicts the three level MF for input 
parameters used in FIS. Fig. 6d shows the five lev-
el MF for output parameter. The fuzzy rules were 
established to obtain TFPI by the use of “if-then” 
statement. The fuzzy rules used in present work are:

Fig. 6. Fuzzy membership functions for input and outputs with fuzzy rules; a) Membership function for MRR; 
b) Membership function for Rt; c) Membership function for RCL; d) Membership function for Pi; e) Fuzzy rules

a) b)

e)

d)c)
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 • Rule 1: If MRR is Small and Rt is Small and 
RCL is Small then TFPI is Very Small.

 • Rule 2: If MRR is Medium and Rt is Medium 
and RCL is Small then TFPI is Large.

 • …
 • Rule 16: If MRR is Large and Rt is large and 

RCL is Medium then TFPI is Very Large.

The performance index evaluated after the de-
fuzzification of supplied normalized input and an 
output in the form of performance index i.e. TFPi 
was generated. The values of TFPi, as predicted 
by hybrid TOPSIS-Fuzzy technique, are shown in 
Table 3. Figure 6e shows the fuzzy rules used in 
the present work. 

The TFPi value obtained by TOPSIS-Fuzzy 
was further processed by analysis of variance 
(ANOVA) to compute the percentage contribution 
of each wire-EDM process parameters (Table 4). 
Figure 7 represents the variation of TFPi value 

with respect to the wire-EDM parameters. As 
TFPi is larger the better type quality attribute, 
therefore the better TFPi value is suggested by 
the highest level of process parameters. 

Moreover, the Pon was found as the most sig-
nificant parameter. The P-value of all the input 
parameters is less than 0.05, which signifies that 
all the parameters have significant contribution in 
TFPi. The empirical model corresponding to re-
gression analysis of TFPi is as follows:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  0.3915 + 0.000545𝑆𝑆𝑆𝑆 + 
+ 0.1645𝑇𝑇𝑃𝑃𝑃𝑃 − 0.00155𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 + 0.00188 𝑊𝑊𝑇𝑇  (1)

The empirical model (Eq. 1) developed by re-
gression analysis is solved by the PSO algorithm. 
The four input parameters used in the present 
work were incorporated in Eq. 1 with the lower 
and upper limits as given from Equations 2-5.

20 ≤  𝑆𝑆𝑆𝑆 ≤  50  (2)

Table 4. ANOVA for TFPi

Source DF SS
Percentage

contribution
MS F P

SV 3 0.001206 2.28 0.000402 30.54 0.009

Pon 3 0.049466 93.4 0.016489 1252.30 0.000

Poff 3 0.001387 2.62 0.000462 35.13 0.008

WF 3 0.000860 1.62 0.000287 21.76 0.015

Residual error 3 0.000040 0.08 0.000013

Total 15 0.052959 R2: 99.93; R2 (adj.): 99.63

Table 3. TOPSIS normalized and Fuzzy based performance index

Sl. No.
Weighted normalized TOPSIS-Fuzzy performance index

MRR Rt RCL TFPi

1 0.0681 0.2164 0.1460 0.41

2 0.2334 0.2354 0.1956 0.545

3 0.2529 0.2411 0.2345 0.545

4 0.2626 0.2622 0.2887 0.545

5 0.0875 0.2340 0.1282 0.411

6 0.2723 0.2559 0.2307 0.545

7 0.1653 0.2253 0.2391 0.501

8 0.3112 0.2717 0.3066 0.551

9 0.1070 0.2323 0.1617 0.429

10 0.2042 0.2420 0.1923 0.524

11 0.3112 0.2535 0.2919 0.548

12 0.2820 0.2762 0.3325 0.545

13 0.0875 0.2258 0.1617 0.419

14 0.2431 0.2335 0.2362 0.545

15 0.3501 0.2777 0.3043 0.557

16 0.4279 0.3005 0.3843 0.584
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Table 5. Validation experiments at optimal settings of process parameters

Sl. No. Response Process parameter setting for 
single response optimization

Predicted best value for 
single response

Experimental value by TFPi at 
[(SV)50(Pon)1(Poff)17(WF)4]

1. TFPi (SV)50(Pon)1(Poff)17(WF)4 0.5631 0.5631

2. MRR (SV)50(Pon)1(Poff)9(WF)12 0.044 0.049

3. Rt (SV)20(Pon)0.35(Poff)24(WF)3 7.377 11.45

4. RCL (SV)20(Pon)0.35(Poff)24(WF)9 5.745 22.10

0.35 ≤  𝑃𝑃𝑃𝑃𝑃𝑃 ≤  1  (3)

9 ≤  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤  24  (4)

3 ≤  𝑊𝑊𝑊𝑊 ≤  9  (5)

Along with the above limits of input param-
eters, the values of inertia weight = 0.4 to 1; and 
acceleration coefficients as C1: 1.35, C2: 2.45 were 
used for the calculation of optimized value (TFPi). 

Figure 8 illustrates the global best solution for 
the TFPi with the iteration. The solution was plot-
ted between the objective function (developed by 
the empirical model) and number of iterations. It 
was observed that each solution exhibits its own 
best solution and global best solution was attained 

after a few iterations. The value of TFPi suggested 
by PSO algorithm is 0.5631. The Weibull distribu-
tion of probability for TFPi is represented in Figure 
9. It was depicted that the probability distribution 
start at a value of 0.005 corresponding to a prob-
ability value of 0.5 and TFPi value of 0.5631 corre-
sponds to a probability of 0.99. The optimized set-
ting of the process parameters suggested by PSO 
is SV: 50V; Pon: 1µs; Poff: 17 µs and WF: 4m/min. 

VALIDATION OF RESULTS

The computed optimum values of wire-EDM 
parameters by hybrid TOPSIS-Fuzzy-PSO were 

Fig. 7. Variation of TFPi with respect to the input parameters
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verified by conducting confirmation experi-
ments. As it was seen, the proposed methodolo-
gy with TOPSIS-Fuzzy-PSO performance index 
predicts that SV- 50 V, Pon- 1 µs, Poff- 17 µs and 
WF- 4 m/min as the optimum wire-EDM pa-
rameters setting for the best values of responses 
(See Table 5). 

Experiments were conducted at this param-
eter setting and the responses were measured. It 
was found that the optimum setting with single 
set of parameters computed with the help of 
TFPi (i.e. by the hybrid optimization technique) 
produced good results, and the actual values of 
responses are comparable to the predicted val-
ues. In the case of Rt and RCL, the single re-
sponse optimization provides better results, 
but after the implementation of multi-objective 
optimization a compromise was set and conse-
quently a compromised solution was obtained. 

As it was the main objective of this work i.e. 
to carry out multiperformance/multi-objective 
optimization in order to obtain the best possible 
values of all responses together. At this stage, 
the machine tool was set at the suggested opti-
mal setting and experiments were performed to 
check the validity of results. Table 5 represents 
the experimental values of MRR (0.049 g/min), 
Rt (11.45 µm) and RCL (22.10 µm) at the opti-
mal setting suggested by TFPi. It was found that 
at some places, the resultant values suggested by 
TFPi are comparable to best value, while After 
investigating the surface morphology of the ma-
chined Ni55.8Ti sample at computed wire-EDM 
parameters, it was found that optimum machin-
ing took place with very small amount of micro-
pores, cracks and other surface defects, making 
the material significantly useful for biomedical 
and other precision engineering applications. 

Fig. 8. Global best value of TFPi with the iterations

Fig. 9. Probability of the optimized TPFi value
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CONCLUSIONS

TOPSIS-Fuzzy-PSO integrated modeling and 
computation of process parameters for produc-
tivity and surface quality during wire-EDM of 
Ni55.8Ti shape memory alloy was reported in this 
paper. The following conclusions can be drawn 
from this work:
1. PSO coupled with fuzzy logic and TOPSIS 

was successfully used to solve the multi cri-
teria decision making problem and computed 
optimum set of wire-EDM parameters servo 
voltage- 50 V, pulse-on time- 1 μs, pulse-off 
time- 17 μs, and wire feed rate- 4 m/min for 
better machining of the Ni55.8Ti alloy. 

2. ANOVA of TOPSIS-Fuzzy performance index 
found pulse-on time as the most influencing 
parameter.

3. PSO algorithm suggests that few numbers of it-
erations are sufficient to provide the optimized 
TFPi value rather than huge number of repeti-
tions in statistical techniques. In addition, the 
optimal setting suggested by PSO provides the 
optimal setting of input parameters, which lies 
between two adjacent levels.

4. The proposed TOPSIS-Fuzzy-PSO integrated 
hybrid technique can also be used further for 
modeling and optimization of wire-EDM pa-
rameters for other responses, such as cutting rate, 
micro-hardness, and dimensional deviation etc. 
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